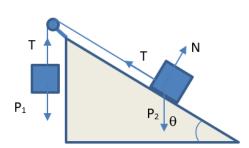
Adaptación del modelo de examen a causa de COVID-19

Materia: Física

PROPUESTA A

Cuestiones teóricas


- 1. Cantidad de movimiento: teorema de conservación.
 - Definición de momento lineal. 0.5p
 - Ecuación fundamental de dinámica traslación. o.5p
 - Teorema de conservación. 0.5p
 - Papel de fuerzas externas/internas. 0.5p
- 2. Ley de inducción electromagnética.
 - Enunciado 1.0p
 - Expresión matemática o.5p
 - Explicación sentido (Lenz) 0.5p
- 3. Leyes de Kepler para el movimiento planetario.
 - De que hablan (contexto) 0.5p
 - Primera ley (elipse) 0.5p
 - Segunda ley (velocidad areolar) 0.5p
 - Tercera ley (proporcionalidad T² y d³) 0.5p

Problemas

- 1. a) Si parte de x=4 con velocidad nula esa será precisamente su amplitud: A=4 cm. El tiempo de cada oscilación es el periodo, que se da como dato. La frecuencia angulas es $\omega = 2\pi/T = 3.0$ rad/s
 - Determinar A: 0.5 puntos
 - Calcular ω : 0.5 puntos
 - b) La expresión general del MAS es $y=A\cdot sen(\omega t+\phi)$. En este caso $y=4\cdot sen(3t+\phi)$ cm Como y(0)=4 cm (dato) $\Rightarrow 4\cdot sen(\phi)=4 \Rightarrow \phi=\pi/2$. Por tanto $y=4\cdot sen(3t+\pi/2)$
 - Expresión posición MAS: 0.5 puntos
 - Cálculo desfase: 0.5 puntos
 - c) La velocidad de oscilación es la derivada de la posición: $v=4\cdot3*\cos(3t+\pi/2)=12\cos(3t+\pi/2)$ cm/s. Al estar acotado el coseno entre ±1 el valor máximo es 12 cm/s

Esta velocidad se alcanza cada vez que pasa por el punto de equilibrio (x=0) lo cual ocurre en múltiples ocasiones: $sen(3t+\pi/2)=0$. La primera $3t+\pi/2=\pi \rightarrow t=\pi/6$ s

- Expresión de velocidad: 0.25 puntos
- Valor de velocidad máxima: 0.25 puntos
- *v_{max} en posición equilibrio: 0.25 puntos*
- Valor de t para v máx: 0.25 puntos
- 2. A partir del diagrama de fuerzas adjunto aplicamos la segunda ley de Newton a los dos cuerpos por separado:

La componente paralela al plano de P_2 es $m_2g \cdot sen(\theta)$ $m_2g \cdot sen(\theta)$ - $T=m_2 \cdot a \rightarrow ecuación cuerpo 2$ $T-m_1g=m_1a \rightarrow ecuación cuerpo 1$

Resolviendo se obtiene a=6.12 m/s², T=110.2 N

- Ecuación cuerpo 1: 0.5 puntos
- Ecuación cuerpo 1: 0.5 puntos
- Obtención a: 0.5 puntos
- Obtención T: 0.5 puntos

(c) El trabajo es W=F· Δ x·cos(α) (\Rightarrow 0.25 puntos) donde α es el ángulo que forma la fuerza con el desplazamiento (\Rightarrow 0.25 puntos).

En el caso de P_1 son paralelos: $W_1=m_1g\cdot\cos(0)=m_1g=294$ N \rightarrow 0.25 puntos En el caso de P_2 forman $\pi/2-\theta=60^{\circ}$ $W_2=m_2g\cdot\cos60^{\circ}=49$ N \rightarrow 0.25 puntos

Prueba Acceso para mayores de 25

Adaptación del modelo de examen a causa de COVID-19

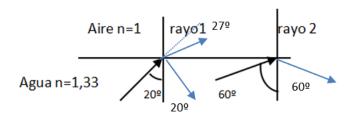
Materia: Física

- 3. (a) Las resistencias de 200 Ω y 400 Ω están en serie y equivalen a una de 600 Ω (\rightarrow 0.5 puntos). La corriente que circulará por ellas según la Ley de Ohm es I=9V/600 Ω =0.015 A (\rightarrow 0.5 puntos)
 - (b)La energía disipada es $E=R \cdot I^2 \cdot t$ (\rightarrow 0.5 puntos). La intensidad en este caso I'=9/100=0.09A por tanto $E=100 \cdot 0.09^2 \cdot 60 = 48.6 \text{ J}$ (\rightarrow 0.5 puntos)
 - (c) Según Ley Ohm $\Delta V=R \cdot I=200 \cdot 0.015$ (calculada antes)=3V (\rightarrow 1 punto)

PROPUESTA B

Cuestiones teóricas

- 1. Magnitudes escalares y vectoriales.
 - Concepto de magnitud escalar 0.5p
 - Concepto de magnitud vectorial (modulo, dirección, sentido) 1.0p
 - Ejemplos 0.5p
- 2. Cinemática y dinámica del movimiento oscilatorio armónico simple.
 - Ecuación de movimiento 0.5p
 - Expresión de la posición 0.5p
 - Expresión de la velocidad 0.5p
 - Expresión de la aceleración o.5p
- 3. Ley de Coulomb. Campo eléctrico de cargas puntuales. Potencial eléctrico.
 - Fuerza de Coulomb (expresión, atractiva/repulsiva- signo) 1.0p
 - Concepto de campo 0.5p
 - Concepto de potencial 0.5p


Problemas

- (a) La relación entre el intercambio de calor y el cambio de temperatura es Q=m·c·ΔT (→ 0.25 puntos). En este caso Q=2·4180·20=167200 J (→ 0.25 puntos)
 Una vez a 0°C hay que seguir quitando calor para cambiar de fase a razón de Q=L·m (→ 0.25 puntos). En este caso Q=333·2=666 J (→ 0.25 puntos)
 - (b) Para pasar de hielo a o°C a hielo a -20°C seguimos retirando calor pero el calor especifico cambia... Q'= $m \cdot c' \cdot \Delta T' = 2 \cdot 2056 \cdot 20 = 82240 \text{ J}$ ($\rightarrow 0.5 \text{ puntos}$) En total necesitamos 167200+666000+82240=915440 J ($\rightarrow 0.5 \text{ puntos}$)
 - (c) La potencia es P=E/t (\rightarrow 0.5 puntos) y la energía se extrae en forma de calor... por tanto t=Q/P=915440/500=1830.9 s=30.5 minutos (\rightarrow 0.5 puntos)
- 2. (a) La primera Ley de Snell dice que el ángulo de reflexión es igual al de incidencia (\rightarrow 0.25 puntos). La segunda Ley de Snell establece las condiciones para la refracción: $n_1 \cdot \text{sen}(\theta_1) = n_2 \cdot \text{sen}(\theta_2)$ (\rightarrow 0.25 puntos) En el caso del rayo 1 será 1.33·sen(20)=1·sen(θ_1) \rightarrow θ_1 =27° y el reflejado 20° (\rightarrow 0.5 puntos)

Prueba Acceso para mayores de 25

Adaptación del modelo de examen a causa de COVID-19

Materia: Física

(b) En el caso de la luz velocidad= $\lambda \cdot \nu$ y el índice de refracción es precisamente el cociente entre la velocidad de la luz en el vacío y en el medio correspondiente: $n=c/\nu$.

En este caso $v=c/n=2.25\cdot10^8$ m/s (\rightarrow 0.5 puntos)

 $\lambda = v/v = 2.25 \cdot 10^8/4.3 \cdot 10^{14} = 5.24 \cdot 10^{-7} = 524 \text{ nm}$ (\Rightarrow 0.5 puntos)

- (c) La segunda ley aplicada al segundo caso no tiene solución ya que 1.33·sen(60)=1.15 y ningún ángulo tiene un seno mayor que 1. Esto significa que en este caso NO hay refracción. (\rightarrow 0.5 puntos) Se produce reflexión total, y solo hay haz reflejado, que sale formando 60°con la normal. (\rightarrow 0.5 puntos)
- 3. En este problema tenemos la caída libre de un cuerpo
 - (a) Como la aceleración de caída es constante $g=9.8 \text{ m/s}^2$, $v=g \cdot t$ pero no conocemos el tiempo de caída así que usamos la otra expresión alternativa $v^2=2gh \rightarrow v=17.14 \text{ m/s}$ ($\rightarrow 1.0 \text{ puntos}$)
 - (b) Como v=g·t ahora sí podemos usarla para obtener t=v/g=17.14/9.8=1.75 s (→ 1.0 puntos)
 - (c) E_p =mgy. En el segundo piso la altura es 6m (3m cada piso). Tomando como referencia el suelo E_p =5.88 J. {Si tomamos como referencia el punto inicial sería 0.1*9.8*(-9m)=-8.82 J... También es válido} (\rightarrow 0.5 puntos)

 $E_c=0.5 \cdot m \cdot v^2$. La velocidad podemos calcularla con la expresión del apdo (a) usando para el espacio recorrido hasta llegar al segundo piso: 9m v=13.28m/s \rightarrow Ec=8.82 J (\rightarrow 0.5 puntos)