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Computational Protein Design and Protein 
Structure Prediction 

The Royal Swedish Academy of Sciences has decided to award David Baker, Demis 
Hassabis and John Jumper the Nobel Prize in Chemistry 2024, for computational protein 
design and protein structure prediction. 

Introduction 

The first three-dimensional (3D) structures of proteins were determined by X-ray crystallography 
about 65 years ago.1,2 Ever since, scientists have been fascinated by how the polypeptide chains 
fold themselves up into well-defined and complex 3D patterns. It is also precisely these specific 
structures that confer proteins their function. It thus became clear that the ability to predict the 
3D structure of a protein would enable prediction also of its function and biochemical properties. 

In 1972, Christian Anfinsen was awarded the Nobel Prize in Chemistry for the remarkable finding 
that protein 3D structures were basically encoded by the sequence of amino acids in the 
polypeptide chain. That is, he found that if a protein is reversibly denatured, it would always refold 
into the same 3D conformation.3 This finding led to the long scientific quest of predicting 3D 
structures directly from the primary amino acid sequence. The problem is considered so 
important that Nobel Prize Laureate Venki Ramakrishnan has described it as a “50-year-old 
grand challenge in biology”.4  

Determining protein structures by experimental means is labour intensive. It is noteworthy that 
while the number of DNA sequences in public databases is now close to 3 billion, and the number 
of protein sequences that have so far been identified in organisms is over 200 million, the Protein 
Data Bank5 still contains only a small fraction of the corresponding 3D protein structures 
(~200 000). To be able to predict protein structures directly from the amino acid sequence would 
thus be a major achievement.  

The problem here is that the number of theoretically possible conformations of a protein is truly 
astronomical. Cyrus Levinthal estimated this number and gave name to what is called “Levinthal’s 
paradox”.6 It is often stated in terms of the number of possible conformations for a 100-amino-
acid residue protein, which would be on the order of 1047. Hence, the inevitable conclusion is that 
proteins do not fold by means of a random search of all these conformations, but by biased folding 
pathways.6,7  
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Study of the actual protein folding process is a very large scientific subject area in itself and has 
made considerable progress over the years, both by experimental work and theoretical 
calculations. However, predicting protein structures from sequence is a different problem where 
the final stable structure of the folding process is the ultimate goal. 

The structure prediction problem can also be formulated in another way, where one instead asks 
what amino acid sequences would yield a certain folding pattern. This question is at the heart of 
protein design, a field where a target structure is envisaged and then sequences that would yield 
this structure are identified by computational means.  

This year’s Nobel Prize in Chemistry recognizes decisive breakthroughs in solving both of these 
problems – structure prediction from sequence and sequence prediction from structure – and the 
implications are truly profound. Most monomeric protein structures can now be predicted with 
high fidelity, and large databases of hundreds of millions of structures have thus been created, 
with huge impact on biochemical and biological research. Likewise, completely new protein 
structures, not found in nature, can now be created by computational design and used in various 
biotechnological and biomedical applications. 

Background 

After determination of the first protein structures, it was immediately recognized that protein 
tertiary (3D) structures contain recurring regular so-called secondary structure elements, such as 
α-helices and β-sheets, the orientation and packing of which, together with connecting loop 
regions, define the actual tertiary topology (Figure 1). In fact, the α-helical polypeptide pattern 
was predicted by Linus Pauling as early as 1951.8 The earliest attempts to predict protein structure 
from amino acid sequence therefore focused on secondary structure prediction, rather than 
tertiary.  

Hence, in 1974, Chou and Fasman 
used a dataset of 15 proteins with 
known conformation to 
determine propensities for all 20 
natural amino acids to be found 
in either α-helical or β-sheet 
regions of proteins. By calculating 
the average α- and β-probabilities 
of different chain fragments, they 
could thus predict the secondary 
structure of a polypeptide chain.9  

Figure 1. Hierarchy of protein structure. Primary: the amino acid 
sequence that is determined by the corresponding sequence of DNA base 
triplets. Secondary: formation of regular geometric patterns of α-helices 
and β-sheets. Tertiary: the detailed 3D shape of the polypeptide chain. 
Quaternary: the association of several polypeptide chains or subunits. 
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The predictions based on this approach, however, turned out not to be very accurate. This is 
mainly due to the fact that 3D tertiary interactions also are important for establishing the 
secondary structure, and not just the 
one-dimensional (1D) sequence of 
amino acids (primary structure). At 
that time, the total number of 
experimentally determined structures 
in the Protein Data Bank was also very 
modest (a few hundred), and it 
remained at this level until the 1990s, 
when the database really started to 
grow due to several advances in 
protein crystallography (Figure 2).10  

Despite the limited available protein 
structures during these earlier years, some profound physical-chemical rules could be gleaned. 
The hydrophobic effect was clearly manifested in these structures, where nonpolar amino acid 
sidechains were predominantly found to be packed in the protein interior, well shielded from the 
surrounding water solvent. Conversely, polar and, particularly, charged sidechains were instead 
found on the protein surface, where they could interact with the polar solvent. Polar sidechains 
were also seen in the interior, but then they tended to form networks of hydrogen bonds to 
compensate for the loss of solvation energy upon folding of the protein. Such seemingly simple 
rules gave rise to the first attempts of protein design, where researchers tried to design 
polypeptide sequences that essentially would obey the simple rule – nonpolar inwards, polar 
outwards.11 

Based on this information, a perfect case for protein design would 
be amphiphilic helical structures, where one face of each α-helix is 
hydrophilic, exposed to the solvent, and the other faces 
hydrophobic, which would allow packing with similarly hydrophobic 
surfaces in the interior of the designed structure (Figure 3). This was 
realized by Regan and DeGrado, who, in 1988, constructed a four-
helix bundle protein obeying these principles, where three loops 
were needed to connect the four α-helices. The resulting structure 
was characterized by biochemical means and found to be a highly 
helical and stable monomeric protein.12  

Four-helix bundles thus became common targets for protein design 
in the early years of this field, and the concept of a “binary code” with 
hydrophobic and hydrophilic amino acid residues was further 

Figure 3. Example of a four-helix 
bundle structure with a hydro-
phobic interior and a hydrophilic 
exterior surface. Only the protein 
backbone is shown. 

Figure 2. Time evolution of the number of experimentally 
determined protein structures deposited in the Protein Data Bank. 
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elaborated by Hecht and coworkers. These researchers constructed a large library of synthetic 
genes coding for the same pattern of polar and nonpolar residues and showed that most of the 
designed protein sequences folded into compact α-helical structures.13  

The first steps towards protein design were thus taken in the late 1980s, but simple biophysical 
principles did not suffice for construction of more complex structures, such as mixed α/β-
topologies, and with atomic detail. The breadth of the problem clearly called for an automated 
computational approach.   

Computational protein design 

The first successful design of a small protein via computation was published by Dahiyat and Mayo 
in 1997.14 As a target, they chose the so-called zinc-finger motif that coordinates one or two Zn2+ 
ions. This structure is largely stabilized by interactions with the Zn2+ ions, and the goal of the 
design was to find a new sequence that would adopt the same structure but without any metal 
ions. The generation of new proteins with sequences unrelated to those in nature is usually termed 
de novo protein design.  

The Zn-finger structure is relatively small, made up of ~30 amino acids, and contains one α-
helical segment and two β-strands, plus connecting short loops (ββα motif). The same protein had 
been chosen as a target the year before by Imperiali and coworkers, who iteratively designed a 23-
residue variant of the Zn finger, with about one-third of the residues in common with the original 
sequence; they showed by NMR spectroscopy that it acquired the desired structure.15  

Dahiyat and Mayo, however, took an entirely computational approach to the problem.14 They kept 
the polypeptide backbone fixed, removed the Zn2+ ions and computationally searched for amino 
acid sequences that would yield the desired 3D structure. This involved not only searching among 
a huge number of possible sequences (~1027), but also 
optimizing the orientation of amino acid sidechains in 
terms of their rotamers (torsional angles). For this 
combinatorial search, they used a dead-end-
elimination (DEE) algorithm together with Monte 
Carlo simulations, with an empirical scoring function 
to evaluate the conformational energies. The resulting 
optimal design had 6 out of 28 residues in common 
with the original Zn-finger sequence (21% identity) 
and its 3D structure was determined by NMR 
spectroscopy, demonstrating a close resemblance to 
the computationally predicted structure (Figure 4).  Figure 4. Schematic structure of the designed zinc-

finger protein by Dahiyat and Mayo.14  
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This study represents an important milestone. However, the algorithm was still limited to 
relatively short sequences, and it therefore did not yet provide a general solution to the design 
problem. Moreover, a general computational design approach would also need to optimize the 
protein backbone conformation.16 

The breakthrough in computational de novo protein design came in 2003, when David Baker 
and coworkers published the design and crystallographic validation of a 93-residue α/β-protein 

named Top7.17 This was a truly remarkable achievement for several reasons. First, it was a 
relatively large protein with two α-helices and a β-sheet made up from five β-strands, and its 
predicted structure was in agreement with the experimental one, including the detailed 
sidechain positions (Figure 5). Second, the authors sought to design a folding pattern not found 
for any globular protein in the Protein Data Bank, and third, the final Top7 design had no 
significant sequence similarity to any naturally occurring protein in the sequence databases. 
Hence, Top7 was an entirely new protein, both structurally and sequence-wise, designed by 
automated computation with full optimization of both backbone and sidechains.  

How did Baker and his coworkers solve the problem? The key to success here was their initial 
development a few years earlier (1999) of the Rosetta computer program.18 It assembles short 
structural fragments from unrelated protein structures with similar local sequences in the 
Protein Data Bank and simultaneously optimizes sequence and structure with respect to the 
target backbone conformation. Monte Carlo optimization was used in the calculations with an 
energy function that treated van der Waals interactions (6-12 Lennard-Jones potential), 
hydrogen bonding and solvation effects; sidechain orientations were sampled from a large 
library of rotamers. The program generates many putative solutions and ranks them in terms of 
energies.  

Figure 5. Left: comparison of the predicted backbone structure of Top7 (blue) with the determined X-ray structure 
(red). Right: view of superimposed sidechains in the cores of the designed model and the solved structure.17 
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Most important, Rosetta was designed to be a general program both for protein structure 
prediction and design, and it has continuously been developed since its inception, with a large 
cadre of users and co-developers. The key idea to build proteins from short fragments can be 
traced back to the work of Jones and Thirup, who showed that in the context of automated 
protein model building into crystallographic electron density maps, assembling proteins from 
known substructures is an effective strategy.19 

Baker and colleagues went on to show that a wide range of protein structures could be designed 
using the Rosetta software.20 While protein design was initially just focused on designing 
structures, more recent work has aimed to also design advanced protein functions. This still poses 
major challenges in terms of understanding protein dynamics, structural transitions, allostery, 
catalytic effects, and so forth, and is thus an area of active research.  

In 2008, Baker and coworkers reported the first attempts at de novo enzyme design, or the 
design of novel enzymes that can catalyse reactions for which no naturally occurring enzymes 
exist.21,22 Although the de novo designed enzymes showed increased catalytic rates compared to 
the non-catalytic background reactions, their overall rates were relatively low compared to those 
of natural enzymes. However, the designer enzymes could be markedly improved by rounds of 
experimental directed evolution (for which Frances Arnold was awarded the Nobel Prize in 
Chemistry 2018).  

An area where computational design of function immediately delivered impressive results was for 
ligand-binding proteins.23 Here, Baker and coworkers could design protein structures that bind 
steroids with high affinity and selectivity. Already the initial designs showed binding affinities in 
the micromolar range, and they could be improved by laboratory evolution to reach the nano- to 
picomolar range.23 They further demonstrated how new protein nanomaterials could be designed 
and could create self-assembling icosahedral virus-like particles on the megadalton scale.24 
Another area of great interest is the design of protein switches and sensors for different analytes, 
with promising applications.25,26  

Protein structure prediction from sequence – slow progress for many years 

A very important initiative within the field of protein 3D structure prediction was the so-called 
CASP experiments (Critical Assessment of protein Structure Prediction) founded by John Moult 
and Krzysztof Fidelis in 1994.27 These biannual challenges allowed truly blind predictions to be 
made and evaluated by comparison to new experimental structures determined by X-ray 
crystallographers and NMR spectroscopists, who would withhold their data until after the 
submission deadline of the CASP entries. This made it possible to assess the progress in structure 
prediction in an unbiased way, and the most difficult category was termed ab initio to indicate 
that there was no relationship to already known complete structures in such cases.28  
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In the early days of CASP, progress was definitely slow, but several new and important ideas of 
how to go about the problem of structure prediction saw the light of day. The strategies used by 
the participants varied substantially, with different knowledge-based approaches and search 
techniques such as genetic algorithms, Monte Carlo methods, and so on. Here, it may also be 
noted that artificial neural networks had entered into secondary structure prediction as early as 
1988.29,30 

Another approach that gained some momentum over the years has been “brute-force” molecular 
dynamics (MD) simulations of protein folding in solution, starting from an arbitrary unfolded 
state. In 1998, Duan and Kollman reported a microseconds-long simulation of a 36-residue 
miniprotein and observed folding to a native-like state,31 and in 2010, Shaw and coworkers 
showed that several small proteins could be folded to the correct structure during milliseconds-
long MD simulations.32 The computational effort involved in these all-atom simulations was, 
however, prohibitive and made it clear that plain MD simulation would not be scalable to proteins 
of larger size in the foreseeable future. Nevertheless, these studies demonstrated that the 
empirical force fields used were good enough to yield folding to the experimentally observed 
structures. 

With the advances in DNA sequencing in the early 1990s, the number of available protein 
sequences also grew rapidly. This meant that larger numbers of sequences for a given protein 
family could be aligned and compared (multiple sequence alignment, or MSA), and researchers 
realized that correlated mutations in such alignments would contain information about pairs of 
amino acids in contact with each other in 3D.33 This was considered such an important concept 
that a contact prediction category was introduced in CASP2 as early as 1996. However, the 
reliability of contact prediction remained low for many years, until CASP12 in 2016, when the 
accuracy suddenly increased dramatically. It turned out that the methods used to analyse 
correlated mutations had been oversimplified and could not distinguish between directly and 
indirectly correlated residues. The latter are non-causally correlated by intervening directly 
correlated residues34,35, and significant improvements could be achieved by disentangling direct 
from indirect statistical dependencies. In CASP12, methods involving machine learning and 
neural networks were also common, and together with the methods improvements for correlated 
mutations, a contact prediction precision of over 45% was reached. 

The accuracy of 3D structure predictions in CASP is measured in terms of a global distance test 
(GDT) score that reports the largest percentage of α-carbons falling within a certain distance 
cutoff from the experimental structure, after iteratively superimposing the two structures.28 An 
average of several such cutoffs (typically between 1 and 8 Å) is taken as the final GDT score. This 
is a more robust measure than the common root-mean-square coordinate deviation, which is 
more sensitive to outliers. Despite the progress outlined above, the average GDT score for the best 
ab initio predictions was stuck below 40% up until and including CASP12 in 2016.  
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Protein structure prediction and AlphaFold 

Following the leap in contact prediction accuracy seen in 2016, the next round of CASP13 in 2018 
witnessed another major improvement in contact accuracy which had now reached 70%.36 Now 
the accuracy had become high enough to allow translation of the contact or distance maps into 
3D structures. The main reason for this improvement was the impact of deep learning methods 
using convolutional neural networks.  

It had become clear that the problem of training a network to predict 2D distance maps had 
distinct similarities with image recognition tasks, where convolutional networks are widely used. 
Such networks apply filter optimization to extract features in a hierarchical manner, thereby 
simplifying the number of neural network connections needed. Hence, for the CASP13 experiment 
in 2018, the company DeepMind, founded and led by Demis Hassabis, constructed a computer 
program based on a convolutional neural network, which they called AlphaFold (now known as 
AlphaFold1 or AF1).37 The program was trained on Protein Data Bank structures to produce a 
distance map between residues, or rather a map of probability distributions for the distances, 
based on multiple sequence alignments. From this map, a potential of mean force could be 
constructed and optimized by a gradient descent algorithm to generate structures.37 

With deep learning entering the structure prediction field, the performance had now risen to a 
GDT score of about 60% (Figure 6), and the AlphaFold team was clearly ahead of other 
participants. Hassabis and his team had already taken the community of Go and Chess players 
by storm in 2018, when they published the AlphaZero program, also based on deep learning, that 

Figure 6. Left: progress of the CASP performance over the years for the best models and the most difficult 
targets.38 Right: performance of AlphaFold2 relative to the top 15 entries by other groups in CASP14. Data are 
the median coordinate error and the 95% confidence interval of the median, estimated from 10 000 bootstrap 
samples.41   
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showed unsurpassed performance in these and other two-party games.39 However, there was still 
some way to go for protein structure prediction to reach near-experimental accuracy.  

AlphaFold2 – the real breakthrough 

In the next round of CASP in 2020 (CASP14), the group from DeepMind had again not only 
achieved another leap in accuracy but could now actually present an accuracy competitive with 
experimental structures for a majority of targets. Hence, while the contact and distance prediction 
performance remained at around 70% in CASP14, the GDT score for the best predictions on 
difficult targets40 had now reached about 90%, and this was due to the new AlphaFold2 (AF2) 
program41 (Figure 6). A GDT score of about 90% is generally considered on par with experimental 
accuracy, since experimental structure determination is, of course, also associated with some 
errors. The AF2 team led by John Jumper and Hassabis had thus finally succeeded in solving 
the protein structure prediction problem for monomeric proteins to within a backbone accuracy 
of about 1 Å.     

Importantly, the neural network model of AF2 had been entirely redesigned compared to that of 
AF1.41 The convolution approach was abandoned, and instead a transformer architecture was 
used, with the essential attention mechanism for learning which parts of the input are more 
important for the objective of network.42 The network is also of the end-to-end type, where atomic 
coordinates are directly produced as output rather than contact information, which had to be 
post-processed separately in AF1.  

The AF2 network has two main blocks called the Evoformer and the Structure module (Figure 7). 
The Evoformer works simultaneously with a multiple sequence alignment representation (a 2D 
matrix of aligned sequences from different species) and a pair representation (a 2D matrix of pair 
distances). The multiple sequence alignment and pair representations exchange information 
during the learning process and update each other, thus allowing both to evolve. The Structure 
module then directly operates on a 3D backbone structure using the pair representation and the 
target sequence, where the backbone geometry is defined in terms of triangles formed by the N-
Cα-C atoms of each residue (Figure 7). These triangles float around freely as rigid bodies and are 
moved by the network to form the structure. This “residue gas” representation is updated 
iteratively using affine matrices that rotate and translate the residues in space, where an 
“invariant point attention” mechanism is used.41 Finally, the sidechain rotation χ-angles, which 
determine the detailed sidechain conformations, are predicted and 3D atomic coordinates can be 
computed. The output structure is then recycled back to the Evoformer a number of times to 
improve the final result. For further technical details, the reader is referred to Ref. 41 and its 
supplementary information.  
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 Overall, the AF2 architecture can been described as an ingenious piece of neural network 
engineering by Jumper, Hassabis and their coworkers, with a multitude of new inventions, and 
it can be viewed as the first real scientific breakthrough of artificial intelligence. The fact that the 
AF2 source code was made public also decisively contributed to its impact, as it could be 
extensively tested and validated. A deep learning architecture similar to that of AF2 was also 
rapidly adopted by Baker and colleagues in the RoseTTAFold program.43 

One might ask whether the deep learning methodology of AF2 is more or less equivalent to pattern 
recognition, but this is not really the case, since the number of possible conformations of a typical 
protein is astronomically larger than the number of atomic constellations found in the Protein 
Data Bank. Instead, the probable explanation for the program’s performance is that it has 
effectively learned a potential of mean force (free energy surface), i.e., probability distributions 
for interatomic distances between pairs of atom types. There is thus a direct connection to the 
physical principles of protein structure, where the “knowledge” acquired by the program can be 
used to accurately determine structures.  

One may also wonder why the protein design field appeared to be ahead of structure prediction 
for many years. The likely explanation for this is that the target structures for protein design are 
usually highly regular and idealized. Once a sequence for the target structure has been optimized, 
it is therefore more probable that its predicted structure will be rather accurate. In ab initio 
structure prediction, on the other hand, one just starts from a sequence with no information about 
what its 3D structure may be, and it may, in fact, be more or less irregular.  

Figure 7. Schematic description of the two main modules of AF2. An input sequence together with data 
from sequence and structure databases serve as input to the Evoformer. The Structure module produces 
as output a 3D model of the protein structure corresponding to the input sequence.  
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Summary and outlook 

We are now at a stage where both the structural design and prediction problems are largely solved. 
The implications of this are far-reaching.  

The AlphaFold2 team immediately created large databases of predicted protein structures, first 
for the human proteome44 and then for the majority of sequences (> 200 million) available in the 
UniProt (Universal Protein Resource) database.45 This means that almost overnight, we got access 
to orders of magnitude more structural information. Likewise, the protein design field has 
reached a stage where some of the most exciting areas of research are biomedical applications, 
such as vaccines and protein-based inhibitors,46 and applications in synthetic biology.47 

The progress described above would not have been possible, of course, without the efforts from 
structural biologists in providing all the experimentally determined structures that have gone into 
the Protein Data Bank. A number of these spectacular protein structures have also been 
recognized with Nobel Prizes in Chemistry over the years. These data, resulting from decades of 
research in protein structure determination, have laid the foundation for the decisive 
breakthroughs in protein design and structure prediction by this year’s Laureates.  

In summary, the achievements of David Baker, Demis Hassabis and John Jumper in the 
fields of computational protein design and protein structure prediction are truly profound. Their 
work has opened up a new era of biochemical and biological research, where we can now predict 
and design protein structures in ways that had not been possible before. Hence, a long-standing 
goal has finally been met, and the impact of this will have far-reaching consequences. 

Johan Åqvist 
Professor of Theoretical Chemistry 
Member of the Royal Swedish Academy of Sciences 
Member of the Nobel Committee for Chemistry 
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